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We present numerical solutions of a two-dimensional inviscid Burgers equation which
provides an asymptotic description of the Mach reflection of weak shocks. In our
numerical solutions, the incident, reflected, and Mach shocks meet at a triple point,
and there is a supersonic patch behind the triple point, as proposed by Guderley
for steady weak-shock reflection. A theoretical analysis indicates that there is an
expansion fan at the triple point, in addition to the three shocks. The supersonic
patch is extremely small, and this work is the first time it has been resolved.

1. Introduction
From the beginning, there have been discrepancies between theoretical predictions

of weak shock reflection (von Neumann 1963) and experimental observations. In par-
ticular, an irregular weak shock reflection closely resembles a single Mach reflection
that contains a triple point. The theoretical analysis, however, shows that a standard
triple-point configuration, in which three plane shocks and a plane contact disconti-
nuity separated by constant states meet at a point, is impossible for sufficiently weak
shocks (Bleakney & Taub 1949; Henderson 1987).

A number of ways to resolve this apparent ‘triple-point paradox’ have been sug-
gested over the last fifty years: there could be an additional, unobserved wave at the
triple point, such as an expansion fan (Bleakney & Taub 1949; Courant & Friedrichs
1976; Guderley 1962; Sternberg 1959), or a fourth shock (Henderson 1966); there
could be a singularity in the solution behind the triple point (Richtmeyer 1981;
Tabak & Rosales 1994), or a singularity in the reflected shock curvature at the triple
point (Sternberg 1959), so that a local approximation of the solution by plane waves
separated by constant states is invalid; or the reflected shock could spread out into a
continuous wave before hitting the incident shock so that there is, in fact, no triple
point (Colella & Henderson 1990; Henderson 1987). A local analysis of the solution
near the triple point cannot determine which of these, or other, conceivable structures
actually occurs, and a global solution of the problem is required.

An asymptotic problem that describes the Mach reflection of weak shocks off
thin wedges was formulated in Hunter (1991). In this problem, the compressible
Euler equations are replaced by a two-dimensional generalization of the inviscid
Burgers equation, the unsteady transonic small disturbance equation. The asymptotic
equations are much simpler to analyse than the full Euler equations, and fewer
computational resources are required to solve them numerically.

In this paper, we present numerical solutions of the asymptotic shock reflection
problem on an extremely fine grid. As shown in figure 5(a), there is a tiny supersonic
patch behind the triple point. An independent check on the validity of the asymptotic
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solutions is provided by subsequent numerical solutions of the full Euler equations
for weak shock reflection off a wall (Brio et al. 2000). The full Euler solutions contain
a supersonic patch and are remarkably similar to the asymptotic solutions shown
here.

The incident shock and a reflected shock of small but non-zero strength collide
at the supersonic triple point to form the Mach shock. All three shocks belong to
the same family. The waves produced by the collision of the incident and reflected
shocks may be determined theoretically by the solution of a local Riemann problem.
In addition to the Mach shock, the solution contains an expansion fan in the opposite
family to the shocks, thus explaining the apparent ‘triple-point paradox’. A schematic
diagram of the local structure of the solution near the triple point, inferred from
the numerical solution and various theoretical considerations, is shown in figure 9.
Guderley (1962) (figure 60, p. 148) proposed essentially the same structure for weak
shock reflection in steady transonic flows.

A supersonic patch has never been observed in experiments, but this is not surprising
given its extremely small size. For example, suppose that a shock of Mach number 1.04
hits an 11.5◦ angle wedge. Using our numerical solution of the asymptotic equations
to estimate the size of the patch, we find that after the shock has propagated a
distance of 1 m along the wedge, the Mach shock height is 0.1 m, the height of the
supersonic patch normal to the wedge is 1 mm, and the width of the patch along
the wedge is 0.1 mm. We hope that this estimate of the size of the supersonic patch,
and the identification of the parameter regime in which it is most easily detected, will
enable its experimental observation.

In addition to its physical importance, the shock reflection problem is one of the
simplest two-dimensional Riemann problems for hyperbolic systems of conservation
laws. These problems are poorly understood from a theoretical point of view because
of the difficulty of analysing nonlinear, mixed-type equations whose solutions contain
shocks. The presence of a supersonic patch, an embedded sonic line, and a transonic
coupling between the solution in the elliptic and hyperbolic regions, seen here,
are likely to be typical features of solutions of general two-dimensional Riemann
problems. For example, a supersonic patch and the generation of an expansion fan at
a shock intersection point appear to occur in the numerical solutions of anomalous
shock refraction shown in figure 3 of Puckett, Henderson & Colella (1995).

We now outline the contents of the paper. In § 2, we summarize the asymptotic
equations for weak shock reflection. In § 3, we present our numerical solutions. In
§ 4, we give a theoretical discussion of these solutions, and in § 5, we describe the
numerical scheme. The asymptotic shock reflection problem is derived in §§ 6–9. In § 6,
we formulate the full Euler problem for shock reflection. In § 7, we write out the exact
solution of the linearized shock reflection problem and describe the regions of the flow
where this linearized solution is not uniformly valid. In § 8, we summarize the weakly
nonlinear expansion valid near the reflection point that leads to the two-dimensional
Burgers equation. In § 9, we obtain the initial data for the two-dimensional Burgers
equation by matching the weakly nonlinear solution with the linearized solution.

2. The asymptotic shock reflection problem
There are two main parameters in the shock reflection problem,

M = Mach number of the incident shock,

θw = wedge angle.
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Figure 1. Regions for the asymptotic solution of weak shock reflection off a thin wedge. The
two-dimensional Burgers equation describes the solution in the reflection region II.

Lighthill (1949) studied the reflection of a strong shock by a thin wedge, when

θw → 0, with M > 1 fixed. (2.1)

In this limit, Mach reflection always occurs. Lighthill’s analysis leads to linearized
equations behind the incident shock, and it does not provide a detailed description
of the solution near the triple point, where nonlinear effects play a crucial role. For
additional work on shock reflection by thin wedges, see Sakurai (1964) and Ting &
Ludloff (1952).

Keller & Blank (1951) and Hunter & Keller (1984) studied the reflection of a weak
shock by a thick wedge, when

M → 1, with θw > 0 fixed. (2.2)

In this limit, regular reflection always occurs. Neither of the limits (2.1) or (2.2)
captures the transition from regular to Mach reflection.

The transition from regular to Mach reflection for weak shocks occurs for thin
wedges when the shock strength and the wedge angle are related by

M − 1 = O(θ2
w) as θw → 0. (2.3)

This limit allows for a competition between the effects of weak nonlinearity and
diffraction, and is the one we consider in the present work. Morawetz (1994) has also
analysed weak shock reflection in the transitional limit (2.3).

In figure 1, we illustrate the structure of the leading-order approximation of the
flow. The method of matched asymptotic expansions shows that there are three main
regions to consider.

I. Over most of the flow field, linearized theory is valid. The leading-order approxi-
mation satisfies a wave equation.

II. Near the reflection point, the leading-order approximation satisfies a two-dimen-
sional inviscid Burgers equation.
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III. At the edge of the diffracted wave, there is a very weak shock. The leading-
order approximation near the diffracted shock satisfies a one-dimensional, cylindrical
inviscid Burgers equation.

In the reflection region II, the leading-order asymptotic solution depends on a
single dimensionless parameter a, which we define by

a =
θw

2
√
M − 1

, (2.4)

where θw is measured in radians. For example, the numerical solution of the Euler
equations shown in figure 7 of Colella & Henderson (1990), with M = 1.0483 and
θw = 10◦, corresponds to a = 0.40. The experiment shown in figure 1 of Sasoh,
Takayama & Saito (1992), with M = 1.15 and θw = 15◦, corresponds to a = 0.34, and
the experimental observation of White, reproduced in figure 17 of Ben-Dor & Glass
(1979), with M = 1.01 and θw = 5.7◦, corresponds to a = 0.50.

The normalized asymptotic problem in region II consists of the two-dimensional
Burgers equation in the half-plane y > 0,

ut + ( 1
2
u2)x + vy = 0,

uy − vx = 0.

}
(2.5)

The independent variables x and y in (2.5) are scaled space variables parallel and
normal to the surface of the wedge, respectively, in a reference frame moving with the
sound speed ahead of the incident shock. The dependent variables u and v are scaled
x and y velocity components, and pressure and density variations are proportional
to u. If we consider an ideal fluid with density ρ, velocity u, pressure p, and constant
ratio γ of specific heats, then ρ

u
p

 =

 ρ0

0
p0

+ ε
2

γ + 1
u

 ρ0

c0ex̃
γp0

+ ε3/2
2
√

2

γ + 1
v

 0
c0eỹ

0

+ O(ε2), (2.6)

where the small parameter ε is defined by

ε = 2(M − 1), (2.7)

and p0, ρ0, and c0 are the pressure, density, and sound speed of the undisturbed fluid
ahead of the incident shock. The variables x̃ and ỹ are spatial variables tangent and
normal to the surface of the wedge, respectively, with corresponding unit coordinate
vectors ex̃ and eỹ . The asymptotic space–time variables (x, y, t) are defined by

x =
x̃− c0̃t

ε
, y =

√
2
ỹ

ε1/2
, t = c0̃t, (2.8)

where t̃ is the physical time variable.
The initial condition for (2.5) is

u(x, y, 0) =

{
0, x > ay
1, x < ay.

(2.9)

Thus, the incident shock has strength one and is initially located at x = ay. The
no-flow boundary condition on the wedge wall y = 0 implies that

v(x, 0, t) = 0. (2.10)
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Finally, the state ahead of the incident shock is undisturbed, so that

v(x, y, t) = 0 for x > s(y, t), (2.11)

where x = s(y, t) is the location of the incident and the Mach shocks.
The boundary condition in (2.10) can be replaced by the symmetry condition

u(x,−y, t) = u(x, y, t), v(x,−y, t) = −v(x, y, t).
The shock reflection problem is therefore equivalent to a one-parameter family of
three-state Riemann problems. See Čanić & Keyfitz (1998) and Čanić & Mirković
(1998) for a study of more general Riemann problems for (2.5). Numerical solutions
of a related problem, the adjustment to steady state of a suddenly deflected transonic
flow past a wedge, are given in Cole, Cook & Schleiniger (1997).

An algebraic analysis of the jump conditions for the two-dimensional Burgers
equation shows that the regular reflection of plane shocks is impossible for a < ad,
where the detachment point ad is given by (Hunter 1991)

ad =
√

2. (2.12)

The two-dimensional Burgers equation does not have triple-point solutions in which
three plane shocks separated by constant states meet at a point (Brio & Hunter
1992; Tabak & Rosales 1994). Thus, a standard single Mach reflection cannot occur
when regular reflection becomes impossible, and the asymptotic problem embodies
the ‘triple-point paradox’ of weak shock reflection in its most basic form.

A second significant value of a for transition is the sonic point as, where

as =

√
1 +
√

5/2, (2.13)

at which the reflection point is exactly sonic with respect to the flow behind the
reflected shock (Brio & Hunter 1992). The sonic point as ≈ 1.455 is slightly larger
than the detachment point ad ≈ 1.414.

3. Numerical results
Numerical solutions of the asymptotic shock reflection problem (2.5), (2.9)–(2.11)

show a transition from regular to Mach reflection as a decreases below a critical
value that is close to the sonic and detachment points (2.12)–(2.13). We found that
the structure of the Mach reflection near the triple point is easier to resolve for a
close to 0.5 than for other values of a. When a is larger than 0.5, the size of the
structure that must be resolved near the triple point seems to be even smaller than
for a = 0.5 (see figure 8, for example). Moreover, the triple point moves up the Mach
shock more slowly with increasing values of a, so that longer computing times are
required to obtain the same numerical resolution. When a is smaller than 0.5, the
reflected shock becomes extremely weak and its numerical shock thickness becomes
large, so that the structure of the solution near the triple point is smeared out.

In figures 2 and 3 we show a numerical solution of (2.5), (2.9)–(2.11) which gives
an overall picture of the irregular reflection for a = 0.5. The u-contours, which
correspond to density and pressure contours, are in qualitative agreement with those
of experimentally observed shock reflections (see figure 18 in Bleakney & Taub 1949,
for example). The solution closely resembles a single Mach reflection. The triple-point
location is y/t ≈ 0.51. The strength of the incident shock, measured by the jump in
u, is equal to 1. The strength of the Mach shock increases as it moves away from
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Figure 2. A surface plot of (a) u and (b) −v for a = 0.5.

the triple point and reaches 1.8 at the wall. The reflected shock is much weaker than
the incident shock, with a strength of approximately 0.07 at the sonic point on the
reflected shock. Plots of the incident Mach shock strength and the reflected shock
strength as functions of y/t are shown in figure 4. The strength of the reflected shock
at the triple point is difficult to estimate from figure 4(b) because, very close to the
triple point, the numerically computed jump may include a contribution from part of
an expansion fan as well as the jump across the reflected shock.

Figure 5 shows a numerical solution of u and v near the triple point. The dotted
line is the numerically computed location of the sonic line (4.2) where the self-similar
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Figure 3. A contour plot of (a) u and (b) v for a = 0.5. The u-contour spacing is 0.02 and the
v-contour spacing is 0.01. The region shown in figures 2 and 3 is covered by a 3600 × 1800 grid
which is cut out from a larger 6000× 2400 grid to remove numerical boundary effects. The y-grid
spacing is twice the x-grid spacing and the time step is one half of the x-grid spacing. The total
number of time steps is 3600.
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Figure 4. The strength of (a) the incident shock and the Mach shock, and (b) the reflected shock,
measured by the jump in u, as a function of y/t. The jump is computed across a numerical shock
profile of six grid points in x/t in (a) and eight in (b).

equations change type. The sonic line bends back into the reflected wave and there
is a very small supersonic patch behind the triple point. The supersonic patch is
approximately 0.0015 wide in x/t and 0.006 high in y/t. This height is approximately
1% of the height of the Mach shock.
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Figure 5. A contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-contour spacing
is 0.01 in (a) and the v-contour spacing is 0.002 in (b). The dotted line is the sonic line. The region
shown here is 120×120 grid points wide, and is cut out from a solution computed on a 7200×4800
grid after 26400 time steps. In (b) the axes are labelled by grid point number.
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Figure 6. (a) The minus and (b) the plus characteristic vector field near the triple point for a = 0.5.

The self-similar equations have two families of characteristics in the supersonic
region, whose slopes are given in (4.3). Figure 6 shows the numerically computed
characteristic vector fields of the solution inside the supersonic patch. The implications
of figure 6 for the structure of the solution are discussed in § 4.

The region shown in figures 5 and 6 is 120×120 grid cells wide, and is cut out from
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a solution computed on a 7200 × 4800 grid. The supersonic patch is approximately
20× 40 grid points wide and is well separated from the incident and reflected shocks,
which are about 5 grid points wide. A rough measure of the resolution of a numerical
solution of a Mach reflection on a uniform grid is provided by the number (Nx,Ny) of
(x, y)-grid points between the reflection point where the Mach shock hits the wedge
and the triple point. In this computation, we have (Nx,Ny) ≈ (1350, 3380). The grids
used in previous numerical solutions of weak shock reflection were not fine enough
to resolve the supersonic patch. For example, the solution of the full Euler equations
shown in figure 7 of Colella & Henderson (1990) has (Nx,Ny) ≈ (20, 300), while the
solution of the two-dimensional Burgers equation shown in figure 22 of Tabak &
Rosales (1994), has (Nx,Ny) ≈ (15, 100).

If the size of the supersonic patch is ∆ξ in x/t and ∆η in y/t, then (2.7) and (2.8)
imply that the size of the patch in physical variables is

∆x̃ ∼ 2(M − 1)c0̃t∆ξ, ∆ỹ ∼ (M − 1)1/2c0̃t∆η. (3.1)

As M → 1, the distance travelled by the reflection point along the wedge wall
approaches c0̃t. For a Mach number of 1.04 and a wedge angle of 11.5◦, we have
a = 0.5, ∆ξ ≈ 0.0015, and ∆η ≈ 0.006. Equation (3.1) then gives the estimate of the
patch size stated in the introduction.

If the triple point in the solution of the two-dimensional Burgers equation is located
at y/t = η∗, then the angle χ between the triple-point trajectory and the wedge wall
is given by

χ ∼ η∗θw
2a

as θw → 0 with a fixed.

From the numerical solution, it follows that χ ∼ (0.51)θw when a = 0.5.
In figure 7 we show a numerical solution of (2.5) with the initial data

u(x, y, 0) =

{
0, x > αy
u0, x < αy,

(3.2)

where α = 0.5 and u0 = 0.390625. The change of variables

u→ u

u0

, v → v

u
3/2
0

, x→ x

u0

, y → y

u
1/2
0

, t→ t,

leaves (2.5) invariant and transforms (3.2) to (2.9) with

a = αu
−1/2
0 .

Thus, after a rescaling, this problem is equivalent to the case a = 0.8.
The triple point is located at y/t ≈ 0.14, which gives χ ∼ (0.14)θw . The strength

of the Mach shock at the wall is 2.5 times the incident shock strength. A distinctive
feature of the solution is a sharp minimum in the y-velocity component v just behind
the triple point. This feature was observed in Tabak & Rosales (1994) (see figure
38, which corresponds to a = 0.79). The minimum is caused by the opposing effects
of changes in the strength and slope of the Mach shock. Initially, v becomes more
negative because the Mach shock gets rapidly stronger as it moves away from the
triple point. After the minimum, v increases back towards zero as the Mach shock
becomes more vertical. Another interesting feature of the solution is that the reflected
shock becomes vertical just before it hits the incident shock, then bends around so
that it is sloping forwards in the reference frame of the wedge at the triple point.
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Figure 7. A surface plot of (a) u and (b) −v for (2.5) with initial data (3.2) where α=0.5,
u0 =0.390625, and a=0.8. The region shown in the figure is covered by a uniform 1800×1800 grid.

Figure 8 shows the v-contours near the triple point. The numerical solution is not
sufficiently resolved to show the structure of the solution at the triple point.

4. Theoretical discussion
In this section, we use various theoretical considerations to interpret the numerical

solutions shown in § 3. The result is the structure illustrated schematically in figure 9.
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Figure 8. A contour plot of v near the triple point for (2.5) with initial data (3.2) where α = 0.5,
u0 = 0.390625, and a = 0.8. The v-contour spacing is 0.002 and the dotted line is the sonic line. The
region shown is 173× 173 grid points wide.

In self-similar variables,

ξ =
x

t
, η =

y

t
,

the two-dimensional Burgers equation (2.5) becomes

−ξuξ − ηuη + ( 1
2
u2)ξ + vη = 0,

uη − vξ = 0.

}
(4.1)

This equation is hyperbolic when u < ξ + η2/4 and elliptic when u > ξ + η2/4. The
location of the sonic line where (4.1) changes type is given by

u(ξ, η) = ξ + 1
4
η2. (4.2)

In the supersonic, hyperbolic region, the inverse slopes of the characteristic curves of
(4.1) are given by (

dξ

dη

)
c

= − 1
2
η ±

√
ξ + 1

4
η2 − u. (4.3)

We call the characteristics plus or minus characteristics depending on the choice of sign
in this equation. The direction of propagation along the self-similar characteristics can
be determined by a consideration of the domain of dependence of the time-dependent
equations, and is in the direction of decreasing ξ + η2/4. Equivalently, η increases
along the minus characteristics and decreases along the plus characteristics.
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Figure 9. A schematic diagram of the structure of weak-shock irregular reflection. The dot-
ted-dashed line is the sonic line, the dotted lines are minus characteristics, the dashed lines are plus
characteristics, R is the sonic point on the reflected shock, S is the sonic point on the Mach stem,
and T is the triple point. The limiting case in which R = T is not excluded.

In the numerical solution for a = 0.5 shown in figure 5, the reflected shock
appears to overtake the incident shock at a triple point, and there is a supersonic
patch behind the triple point. From figure 6, the plus characteristics converge on the
reflected shock, the incident shock, and the Mach shock from either side, while the
minus characteristics cross the shocks, so all the shocks are plus shocks.

A conceivable alternative to the existence of a triple point is that the reflected
shock strength tends to zero at some point P before it hits the incident shock, so
that the reflected wave is continuous after P . The following considerations, however,
make it difficult to construct a plausible structure in which this could happen.

First, if the reflected shock enters the supersonic region, then, from the direction
of propagation of the characteristics shown in figure 6(b), the point P is not a
shock formation point, but a point at which the reflected shock disappears. Shocks in
solutions of hyperbolic conservation laws typically remain in existence once they have
formed, so this behaviour is inconsistent with the expected qualitative properties of the
self-similar equations. Although we do not know of a rigorous proof of the persistence
of shocks that is applicable to the two-by-two system of self-similar equations in the
hyperbolic region, we solved numerically a number of initial value problems for
these equations with hyperbolic initial data that consisted of two shocks in the same
family. Depending on the strength and location of the initial shocks, we observed the
overtaking of one shock by another, with the generation of a reflected expansion fan,
or the collision of a shock with the sonic line before overtaking occurred. We never
observed the disappearance of a shock in the hyperbolic region.



Weak shock reflection 247

Second, if part of the reflected wave near the apparent triple point is continuous and
bounded by the sonic line, then the sonic line propagates into the state u = 1 behind
the incident shock. Consequently, the parabola given by the sonic line equation (4.2)
with u = 1 is close to the apparent triple point on the incident shock. This parabola,
however, intersects the incident shock, located at ξ = aη + a2 + 1/2, at η =

√
2− 2a.

For a = 0.5, this gives η ≈ 0.41, which is well below the numerically computed
location η ≈ 0.51 of the apparent triple point. The discrepency between the location
of the triple point and the location of a sonic line propagating into the state behind
the incident shock was noted previously in Tabak & Rosales (1994).

From figure 5(a), the numerically computed location of the sonic point behind
the reflected shock is given by (ξ, η) ≈ (1.0055, 0.514). This location is close to the
triple point, and is consistent with (4.2), because u ≈ 1.07 at the sonic point behind
the reflected shock. This state is more compressed than the state behind the incident
shock, so the sonic line propagates faster than it would into the state behind the
incident shock.

These considerations support the numerical observation that the reflected shock
hits the incident shock at a triple point. Given that the incident and reflected shocks
are separated by smooth states, belong to the same family, and merge at a supersonic
point, we can determine theoretically the waves produced after they merge by solving
a local Riemann problem for the two-by-two system of self-similar equations. As we
will show, the waves produced are a Mach shock in the same family as the incident
and reflected shocks, and a reflected expansion fan in the opposite family.

To carry out this analysis, we transform (2.5) into a reference frame in which the
triple point is at rest and examine the shock and rarefaction curves of the steady
equations. The incident shock is given by

u = 0, v = 0, x > s(y, t),
u = 1, v = −a, x < s(y, t),
s(y, t) = ay + (a2 + 1

2
)t.

 (4.4)

We denote the position of the triple point by

x = ξ∗t, y = η∗t,

where the constants ξ∗ and η∗ satisfy

ξ∗ = aη∗ + a2 + 1
2
.

The following transformation leaves the two-dimensional Burgers equation invariant
and reduces the triple point to rest:

x̄ = x+ 1
2
η∗y − (ξ∗ + 1

2
η2
∗)t, ȳ = y − η∗t,

ū = u− (ξ∗ + 1
4
η2
∗), v̄ = v − 1

2
η∗u.

The triple point is located at the origin of the barred coordinates, and the incident
shock position is

x̄ = āȳ,
where

ā = a+ 1
2
η∗.

In the barred reference frame, the states (u1, v1) ahead of the incident shock and
(u2, v2) behind the incident shock are given by

u1 = −( 1
2

+ ā2), v1 = 0,

u2 = 1
2
− ā2, v2 = −ā.
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Dropping the bars, and assuming that the flow near the triple point is approximately
steady, we may consider solutions of the steady two-dimensional Burgers equation,
or steady transonic small disturbance equation,

( 1
2
u2)x + vy = 0,

uy − vx = 0.

}
(4.5)

The shock curve of (4.5) of left-hand states (u, v) which are connected by a shock to
a right-hand state (uR, vR) is (Cole & Cook 1986)

1
2
(u− uR)2(u+ uR) + (v − vR)2 = 0,

with u > uR . The shock is forward facing if v < vR and backward facing if v > vR .
The rarefaction curves through the right-hand state (uR, vR) are given by

v = v+ + 2
3
(−u)3/2, v = v− − 2

3
(−u)3/2,

with u < uR < 0, where

v+ = vR − 2
3
(−uR)3/2, v− = vR + 2

3
(−uR)3/2.

The expansion wave is forward facing if v > vR , corresponding to v+, and backward
facing if v < vR , corresponding to v−.

The shock and rarefaction curves for a triple point with three forward facing shocks
and one backward facing expansion wave are shown in figure 10 for a = 0.5. In this
plot, the jump in u across the incident shock is 1, the jump in u across the reflected
shock is 0.05, and η∗ = 0.5. The change in u across the expansion fan is then 0.02,
and the jump in u across the Mach stem is 1.03. The dip of the u-contours towards
the sonic point in figure 5(a) is consistent with the presence of a minus expansion fan
originating at the triple point, whose corner is smoothed out by numerical diffusion.

The leading-order asymptotic solution is isentropic and irrotational, but shocks
generate higher-order entropy and vorticity perturbations. From the weak shock
expansion of the jump conditions for the Euler equations, Whitham (1974, p. 176),
and equation (2.6), the entropy jump [S] across a shock is third order in the shock
strength, and is given in terms of the jump [u] in the asymptotic variable u by

[S]

cv
=

2γ(γ − 1)

3(γ + 1)2
ε3[u]3 + O(ε4),

where cv is the specific heat at constant volume. For the shock strengths observed in
the numerical solution, it follows that the entropy jump at the triple point across the
Mach shock is greater than the sum of the entropy jumps across the incident and
the reflected shocks. Since there is no change in entropy across an expansion fan, the
corresponding triple-point solution of the Euler equations must contain a very weak
contact discontinuity of strength O(ε3), in addition to the weak expansion fan and
the three weak shocks of strength O(ε). For an analysis of the entropy jumps across
shocks at a triple point in fluids with a convex equation of state, see Henderson &
Menikoff (1998).

The origin of the non-uniform wave inside the supersonic patch may be explained
by the reflection of characteristics off the sonic line. From (4.3) both families of
characteristics have the same inverse slope on the sonic line,(

dξ

dη

)
c

= − 1
2
η.

Differentiation of equation (4.2) for the sonic line with respect to ξ gives the sonic
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Figure 10. A plot of the shock and rarefaction curves for a triple point with an expansion fan.
The state ahead of the incident shock is denoted by 1, the state between the incident and reflected
shocks by 2, the state behind the reflected shock by 3, and the state behind the Mach stem by 4.

line slope, (
dξ

dη

)
s

=
− 1

2
η + uη

1− uξ .

The characteristics are tangent to the sonic line if and only if

1
2
ηuξ = uη.

This condition is satisfied if u is constant ahead of the sonic line. In that case, both
families of characteristics propagate towards the sonic line and no disturbance in the
subsonic region can influence the solution in the supersonic region. The tangency of
the characteristics to the sonic line is broken when the sonic line is embedded inside a
non-uniform wave (Brio & Hunter 1995) thus allowing the reflection of characteristics
off the sonic line, and the generation of a supersonic wave.

As illustrated in figure 9, the supersonic patch, the supersonic part of the reflected
shock, and the supersonic part of the Mach shock are all influenced by plus char-
acteristics that originate at the sonic line. The structure is therefore consistent with
domain of dependence arguments which imply that a non-uniform wave or a curve
in the incident or reflected shocks cannot form in any part of the hyperbolic region
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where both families of characteristics can be traced back through the hyperbolic
region to infinity (Tabak & Rosales 1994).

In the case of steady shock reflection, Guderley (1962, p. 149), showed that the
sonic line must pass exactly through the triple point. His argument, for the steady
transonic small-disturbance equations, is that the plus wave is reflected off the sonic
line as a compression wave. If the reflected plus shock had a supersonic section, then
its strength would increase as it absorbed the plus compression wave, in contradiction
to the fact that its strength must decrease as the flow behind it changes from subsonic
to supersonic. This argument is not applicable to the self-similar equations. We do
not know of any reason why the sonic line must pass exactly through the triple point
in the self-similar case, meaning that R = T in figure 9, although this limiting case is
not excluded by the numerical solutions or theoretical arguments.

The existence of a supersonic patch behind the triple point raises some subtle ques-
tions connected with the ‘transonic controversy’ concerning shock-free flow transonic
flows over airfoils. At a given free-stream Mach number, special airfoil shapes allow
steady transonic shock-free flow, but the flow typically does not remain shock-free if
the shape of the airfoil is perturbed (Morawetz 1956a–c, 1982). The supersonic patch
is analogous to the supersonic bubble on a transonic airfoil, although an argument
like the one in Morawetz (1956a–c) would not establish the impossibility of shock-free
flow in the patch because the Mach shock is a free boundary whose shape varies with
the Mach number of the incident shock.

The supersonic bubble in a transonic flow over an airfoil is typically terminated by
a shock. If there were a shock at the rear of the supersonic patch behind the triple
point, then there would be two triple points: the leading supersonic triple point and
a trailing triple point. Subsonic triple points that satisfy a few mild conditions are
impossible for the unsteady transonic small-disturbance equation (Gamba, Rosales
& Tabak 1999) so there would presumably be a second supersonic patch behind the
trailing triple point, and therefore a second expansion fan. In that case, there would
be a finite or infinite sequence of supersonic triple points, minus expansion fans and
plus shocks reflected between the Mach shock and the sonic line, and a complicated
singularity at the rear of the supersonic patch. The resolution of the numerical results
presented here is not sufficient to determine whether or not the flow behind the Mach
shock is shock-free.

5. The numerical scheme

The asymptotic shock reflection problem consists of equations (2.5), (2.9)–(2.11). To
solve this problem numerically, we first obtain a set of equations for u. We eliminate
v from the differential equations (2.5) by cross-differentiation, and from the boundary
condition (2.10) by differentiation with respect to x and use of the irrotationality
condition vx = uy , which gives uy = 0 on y = 0. Equations (2.5), (2.9)–(2.11) imply
that u = 0 ahead of the incident and the Mach shocks. It is convenient to make a
Galiliean transformation x→ x+ ct, y → y, where

c = 1
2

+ a2,

into a reference frame moving with the incident shock. This Galilean transformation
has been removed in the numerical solutions shown in § 3. The resulting initial-
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Figure 11. A schematic diagram of the grid in the (x, y)-plane used in the numerical solution. The
dashed line PQRS is the boundary of the computational domain. The dotted line ABCD encloses
the region where a uniform grid is used, with an exponentially stretched grid outside. The fine grid
computation is stopped when the triple point T is close to the edge of the uniform grid.

boundary value problem in y > 0 for u(x, y, t) may then be written as

(ut + f(u)x)x + uyy = 0,

u(x, y, 0) =

{
0, x > ay

1, x < ay,

uy(x, 0, t) = 0,

u(x, y, t) = 0 for x > s(y, t),


(5.1)

where x = s(y, t) is the location of the incident and the Mach shocks, and the flux
function f(u) is given by

f(u) = 1
2
(u− c)2. (5.2)

We recover v from u by integration with respect to x,

v(x, y, t) = −
∫ ∞
x

uy(x
′, y, t) dx′.

In transonic computations, the introduction of a velocity potential is more usual than
the elimination of v, but in this problem both methods lead to equivalent results.

When solving the half-space problem (5.1) numerically, we use the finite computa-
tional domain shown schematically in figure 11. We choose the domain so that the
incident shock leaves through the top boundary, and we stop the computation soon
after the reflected shock hits the top boundary. In addition to the physical boundary
condition uy = 0 on the wall y = 0, we require numerical boundary conditions on the
computational boundaries. We impose u = 0 on the right-hand boundary PQ, and
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Figure 12. A comparison of the u-contours near the left and top computational boundaries of the
fine grid solution (solid lines) with the u-contours from the solution shown in figure 3 computed on
a much larger computational domain (dashed lines).

the Dirichlet condition

u(x, y, t) =

{
0, x > ay
1, x < ay,

(5.3)

corresponding to the unperturbed incident shock, on the top boundary QR. The
boundary which causes the greatest numerical difficulties is the left-hand boundary
RS . This is an inflow boundary, and the solution is unknown on the subsonic part
of it. We therefore use a non-reflecting boundary condition (Enquist & Majda 1981)
on the left-hand boundary, and we found that linear extrapolation, ux = 0, was
reasonably effective. Nevertheless, a numerical wave is generated at the lower-left
corner S and propagates into the computational domain. To avoid pollution of the
solution by boundary waves, we use an exponentially stretched grid near the left-
hand, right-hand, and top boundaries (see figure 11). In the fine grid computation,
we use a stretching factor of 0.25% per grid cell. We stop the computation before
any boundary waves propagate into the reflection region, and before the triple point
leaves the region covered by the uniform, unstretched grid.

In figure 12, we compare the u-contours in the left-hand part of the computational
domain of the fine grid solution, from which the triple-point solutions in figures 5
and 6 are extracted, with the u-contours of the solution shown in figures 2 and 3,
which is computed on a much larger domain to ensure the elimination of boundary
effects. The distortion of the u-contours of the fine grid solution by the corner wave
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can be seen in figure 12, but the fine grid contours coincide with the large domain
contours for x/t > 0.6, which includes the reflection region.

The most important feature of the finite difference scheme that we use to solve
(5.1) is the time discretization. Denoting an approximation of the solution at the time
level n by

un(x, y) ≈ u(x, y, n∆t),
where ∆t is the time step, we discretize (5.1) in time as follows:[

un+1 − un
∆t

+ f(un)x

]
x

+ un+1
yy = 0. (5.4)

This scheme is similar to one introduced by Ballhaus & Lomax (1975) (see also
Steger & Dalsen 1989) for unsteady transonic flow computations. The implicit time
discretization of the diffraction term uyy leads to a stable numerical scheme.

Equation (5.4) is a heat equation for un+1(x, y), with diffusivity ∆t, in which −x is a
time-like variable and y is a space-like variable. The condition u = 0 on the right-hand
boundary PQ in figure 17 gives ‘initial’ data in −x for (5.4). The boundary conditions
in y are the Neumann condition uy = 0 on y = 0 and the Dirichlet condition (5.3) on
the top boundary.

We solve (5.4) by means of a fully implicit scheme to minimize numerical oscilla-
tions, sweeping from right to left in x. Specifically, if

uni,j ≈ un(i∆x, j∆y),

where ∆x and ∆y are the x and y grid spacing, respectively, we use a spatial
discretization of (5.4) of the form

un+1
i,j − σ(un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1)

= un+1
i+1,j + uni,j − uni+1,j + ν(fni+3/2,j − fni+1/2,j − fni−1/2,j + fni−3/2,j), (5.5)

where

ν =
∆t

∆x
, σ =

∆t∆x

∆y2
.

For the numerical flux function fni−1/2,j in (5.5), we use a min-mod flux-limiter (Yang

& Przekwas 1992) that interpolates between the Enquist–Osher and Lax–Wendroff
fluxes associated with the flux f(u) in (5.2). Dropping the t-superscript n and the
y-subscript j, which are fixed throughout the following expressions, this numerical
flux is given by

fi−1/2 = (1− si−1/2)f
EO
i−1/2 + si−1/2f

LW
i−1/2,

fEOi−1/2 = 1
2

max [ui−1 − c, 0]2 + 1
2

min [ui − c, 0]2,

fLWi−1/2 = 1
4
[(ui−1 − c)2 + (ui − c)2] + 1

2
ν(ui−1 − ui)v2

i−1/2,

vi−1/2 = 1
2
(ui−1 + ui)− c.

The flux-limiter si−1/2 is defined by

si−1/2 =


0, ri−1/2 6 0

ri−1/2, 0 < ri−1/2 < 1

1, ri−1/2 > 1,
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Figure 13. A contour plot of u near the triple point for a = 0.5, from a solution on (a) a 4800×3200
grid after 17600 time steps, and (b) 7200× 4800 grid after 19200 time steps. The dotted line is the
sonic line, and the u-contour spacing is 0.01. The region of (x/t, y/t)-space shown here is the same
as in figure 5(a).

ri−1/2 =
[|vi−3/2| − νv2

i−3/2][ui−1 − ui−2]

[|vi−1/2| − νv2
i−1/2][ui − ui−1]

if vi−1/2 > 0,

ri−1/2 =
[|vi+1/2| − νv2

i+1/2][ui+1 − ui]
[|vi−1/2| − νv2

i−1/2][ui − ui−1]
if vi−1/2 < 0.

This scheme is first-order accurate. We tried a number of schemes that were
second-order accurate in time, using the time discretization

uyy ≈ 1
2
(unyy + un+1

yy ),

but found that they led to the generation of unacceptably large numerical oscillations
at the shocks.

We carried out convergence studies to check that the numerical solutions are
self-similar and that the supersonic patch is resolved. In figure 13(a), we show the
u-contours in the same region of (x/t, y/t) space that is shown in figure 5(a) from
a computation on a coarser grid. In figure 13(b), we show the u-contours from the
fine grid solution at an earlier time. The u-contours are in excellent quantitative
agreement. The main effect of increasing numerical resolution is that the dip of the
u-contours and the sonic line towards the triple point becomes more pronounced. The
width of the shocks in x/t shrinks with increasing resolution, but the width of the
supersonic patch remains the same.

6. Euler equations
In this section, we summarize the full shock reflection problem, and in subsequent

sections we describe the systematic derivation of the asymptotic shock reflection
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problem. The main point is the derivation of initial data for the two-dimensional
Burgers equation by matching the weakly nonlinear solution with the linearized
solution.

We neglect viscosity, and will not consider its effects on the ideal fluid description
of shock reflection studied here. For simplicity, we suppose that the shock hits the
wedge at a symmetric angle of incidence. An identical asymptotic problem in the
reflection region is obtained for asymmetric incidence.

We denote spatial coordinates normal and tangent to the incident shock front by
x and y and time by t. We will use the following notation to distinguish between the
different physical variables and asymptotic variables: for a variable z, such as a space
coordinate or a velocity component,

z = original physical variable,

z̃ = physical variable in a rotated

coordinate system aligned with the wedge,

ẑ = unnormalized asymptotic variable,

z = normalized asymptotic variable.

The region Ω of the upper half-plane outside the wedge is given by

Ω =
{

(x, y) : θw < θ < π
}
,

where θw is the half-angle of the wedge, and θ is the polar angle

θ = tan−1

(
y

x

)
.

The fluid density ρ, velocity u, and pressure p satisfy the two-dimensional com-
pressible Euler equations,

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu⊗ u+ pI ) = 0,(
ρ(e+ 1

2
u2)
)
t
+ ∇ · (ρ(e+ 1

2
u2)u+ pu

)
= 0.

 (6.1)

For simplicity, we assume an ideal gas equation of state,

e(p, ρ) =
1

γ − 1

p

ρ
,

where the constant γ > 1 is the ratio of specific heats. The same analysis applies to
general equations of state; the only condition needed is the genuinely nonlinearity of
the sound waves. The corresponding sound speed c(p, ρ) > 0 is given by

c2 =
γp

ρ
.

There is no flow through the wedge and the solution is even in y, so that

u · n = 0, (6.2)

on ∂Ω, where n is the unit normal vector to the boundary ∂Ω. The initial condition
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at t = 0 is

ρ =

{
ρ0, x > 0

ρ1(ε), x < 0,

u =

{
0, x > 0

u1(ε), x < 0,

p =

{
p0, x > 0

p1(ε), x < 0,


(6.3)

where (ρ1, u1, p1) is the state behind the incident shock, and the small parameter

ε =
γ + 1

2

(
ρ1 − ρ0

ρ0

)
(6.4)

measures the shock strength.
Taylor expansion of the Rankine–Hugoniot jump conditions as ε→ 0 implies that

ε is given in terms of the incident shock Mach number M by (2.7), to leading order
in M − 1, and that

ρ1(ε) = ρ0

(
1 +

2ε

γ + 1

)
,

u1(ε) = c0

(
2ε

γ + 1
ex + O(ε2)

)
,

p1(ε) = p0

(
1 +

2εγ

γ + 1
+ O(ε2)

)
.


(6.5)

Here, ex is the unit vector in the x-direction, and c0 = c(p0, ρ0) is the sound speed
evaluated at the state ahead of the shock.

7. The linearized solution
The linearized expansion of the solution of (6.1)–(6.3) is ρ

u
p

 =

 ρ0

0
p0

+ ε

 ρ′
u′
p′

 (x, y, t) + O(ε2). (7.1)

In this limit, the Euler equations (6.1) reduce to the acoustics equations at leading
order. The density perturbation ρ′ satisfies the wave equation,

ρ′tt = c2
0∆ρ

′. (7.2)

The other fluid variables can be recovered from ρ′ by use of the velocity potential ϕ,
where

ρ′ = −ρ0c
−2
0 ϕt, p′ = −ρ0ϕt, u′ = ∇ϕ.

The linearization of the initial conditions (6.3)–(6.5) implies that at t = 0,

ρ′ =

{
0, x > 0
2ρ0/(γ + 1), x < 0.

(7.3)

The boundary condition (6.2) implies that

∇ρ′ · n = 0 on ∂Ω. (7.4)
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The exact solution of the linearized problem (7.2)–(7.4) was obtained by Keller &
Blank (1951). To write out the solution, we introduce similarity variables

ξ =
x

c0t
, η =

y

c0t
, θ = tan−1

(
y

x

)
,

r =
(x2 + y2)1/2

c0t+ (c2
0t

2 − x2 − y2)1/2
, x2 + y2 6 c2

0t
2
.

 (7.5)

The incident, reflected, and diffracted wavefronts are located at

ξ = 1 (incident),

ξ = 1− tan 2θw(η − tan θw) (reflected),

ξ
2

+ η2 = 1 (diffracted).

 (7.6)

The region A ahead of the incident discontinuity, the region B behind the incident
discontinuity, the region C behind the reflected discontinuity, and the region D
occupied by the diffracted wave, are given by

A =
{

(ξ, η) : ξ > 1, θw < θ < π
}
,

B =
{

(ξ, η) : ξ
2

+ η2 > 1 if 2θw < θ < π;

1− tan 2θw(η − tan θw) < ξ < 1 if θw < θ < 2θw
}
,

C =
{

(ξ, η) : ξ
2

+ η2 > 1, ξ < 1− tan 2θw(η − tan θw), θw < θ < 2θw
}
,

D =
{

(ξ, η) : ξ
2

+ η2 < 1, θw < θ < π
}
.


(7.7)

The solution is piecewise constant outside the diffracted wavefront,

ρ′ =


0, (ξ, η) ∈ A
2ρ0/(γ + 1), (ξ, η) ∈ B
4ρ0/(γ + 1), (ξ, η) ∈ C.

(7.8)

The solution for (ξ, η) ∈ D is given by

ρ′ =
2ρ0

γ + 1

(
1 +

1

π
tan−1

[
(1− r2λ) cos (λπ)

−(1 + r2λ) sin (λπ)− 2rλ sin [λ(θ − π)]

]

+
1

π
tan−1

[ −(1− r2λ) cos (λπ)

(1 + r2λ) sin (λπ)− 2rλ sin[λ(θ − π)]

])
, (7.9)

where

λ =
π

2(π − θw)
, (7.10)

and the inverse tangent is chosen in the range

0 6 tan−1 z 6 π.

The linearized solution is not uniformly valid because its derivatives are infinite at
the diffracted wavefront

x2 + y2 = c2
0t

2
.

Nonlinear effects cannot be neglected near the points where this singularity occurs.
There are two regions to consider, which we label regions II and III in figure 1.
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Region II is a thin region around the point where the diffracted wavefront meets
reflected discontinuity in the linearized solution. For small wedge angles, this inner
region contains the reflection point where the shock hits the wedge. Region III is
a very thin region around the diffracted shock. In region II, both the normal and
transverse derivatives of the linearized solution are unbounded. In region III, the
derivatives of the linearized solution normal to the wavefront are unbounded.

An inner expansion in region III about the diffracted wavefront can be carried
out in a similar way to the analysis in Hunter & Keller (1984). We omit a detailed
discussion. The main result is the following expression for the diffracted shock strength
as a function of the polar angle θ:[

ρ
]

ρ1

∼ 3

4

(
γ + 1

2

)(
ρ1 − ρ0

ρ1

)2(
θw

π

)2
1

sin4 [(θ − θw)/2]
.

In the next section, we summarize the inner expansion in region II which leads to
the two-dimensional Burgers equation described in § 2.

8. The reflection region
In region II, it is convenient to use rotated coordinates aligned with the wedge,(

x̃
ỹ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
x
y

)
. (8.1)

In the rotated coordinated system, the wedge boundary is ỹ = 0 with x̃ > 0, and the
linearized location of the reflection point is

x̃ = c0(sec θw )̃t, ỹ = 0,

where t̃ = t.
We look for an asymptotic solution of the Euler equations (6.1) of the form ρ

u
p

 =

 ρ0

0
p0

+ ε

 ρ(1)

u(1)

p(1)

(x̂, ŷ, t̂ )+ ε3/2

 ρ(2)

u(2)

p(2)

 (x̂, ŷ, t̂ ) + O(ε2), (8.2)

where the inner variables (x̂, ŷ, t̂ ) are defined by

x̂ =
x̃− c0̃t

ε
, ŷ =

ỹ

ε1/2
, t̂ = t̃. (8.3)

We use (8.2)–(8.3) in the Euler equations (6.1), expand the result in powers of ε1/2,
and equate coefficients of powers of ε1/2 to zero. This gives ρ(1)

u(1)

p(1)

 = û(x̂, ŷ, t̂ )

 ρ0

c0ex̃
γp0

 ,

 ρ(2)

u(2)

p(2)

 = v̂(x̂, ŷ, t̂ )

 0
c0eỹ

0

 , (8.4)

where the vector ex̃ is the unit tangent vector to the wedge and eỹ is the unit normal
vector to the wedge. Thus, û is a scaled x̃-component of velocity, and v̂ is a scaled
ỹ-component of velocity. The density and pressure perturbations are proportional to
û. The flow is irrotational and isentropic up to small corrections of the order ε3 which
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do not influence the leading-order solution. The functions û and v̂ satisfy

û̂t +

(
γ + 1

4
c0û

2

)
x̂

+ 1
2
c0v̂ŷ = 0,

v̂x̂ − ûŷ = 0.

 (8.5)

The introduction of normalized asymptotic variables,

u =
γ + 1

2
û, v =

γ + 1

2
√

2
v̂, x = x̂, y =

√
2ŷ, t = c0̂t, (8.6)

reduces (8.5) to (2.5). From (8.2)–(8.4) and (8.6), the physical variables are given in
terms of the normalized asymptotic variables by (2.6) and (2.8).

9. Matching
We obtain initial conditions for the two-dimensional Burgers equation (8.5) by

matching the inner, weakly nonlinear solution with the outer, linearized solution given
in § 7. The matching procedure leads to far-field conditions, but far-field conditions
are equivalent to initial conditions because the problem is self-similar.

As shown in figure 1, the linearized solution breaks down in the small region II
near (x̃, ỹ) = (c0̃t, 0). In this region, the leading-order approximation is provided by
the weakly nonlinear solution. Since θw = O(ε1/2), we write

θw = ε1/2â, (9.1)

where â is an order-one parameter. From (8.3), the outer limit of the inner solution is

given by the limit |(x̂, ŷ)| → ∞. The inner limit of the outer solution, l̂im, is given by

l̂im
ε→0

⇒ ε→ 0 with x̂, ŷ, t̂, â fixed.

From (8.1)–(8.4) and (7.1) the matching condition is that

û ∼ û′ as |(x̂, ŷ)| → ∞, (9.2)

where

û′ = l̂im
ε→0

(
ρ′

ρ0

)
. (9.3)

Since the problem for û is self-similar, the matching condition (9.2) is equivalent to
an initial condition

û ∼ û′, as t̂→ 0+. (9.4)

To compute the matching data û′ in (9.3) we introduce asymptotic similarity
variables,

ξ̂ =
x̂

c0̂t
, η̂ =

ŷ

c0̂t
, r̂2 = −(2ξ̂ + η̂2). (9.5)

From (7.5), (8.1), (8.3), and (9.1), we find that in the inner limit

ξ = 1 + ε(ξ̂ − âη̂ − 1
2
â2) + O(ε2),

η = ε1/2(η̂ + â) + O(ε3/2).

}
(9.6)
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From (7.1), (9.1), and (9.5), the inner limits of the shock locations are

ξ̂ = âη̂ + 1
2
â2 (incident),

ξ̂ = −âη̂ + 1
2
â2 (reflected),

ξ̂ = − 1
2
η̂2 (diffracted).

 (9.7)

Thus, the circular diffracted wavefront is mapped to a parabola.
Use of these expressions in (7.8), (7.9), and (9.3) implies that the matching data û′

is given by

û′ =

 0 ahead of the incident shock
2/(γ + 1) behind the incident shock
4/(γ + 1) behind the reflected shock,

(9.8)

and, inside the diffracted wave, by

û′ =
2

γ + 1

{
1 +

1

π
tan−1

[
2â r̂

r̂2 + η̂2 − â 2

]}
.

This matching data is the exact solution of the reflection problem for the linearized
two-dimensional Burgers equation.

As t̂ → 0+, the parabolic diffracted wavefront and the reflected shock collapse to
the half-line ŷ = 0, x̂ 6 0. Use of (9.5), (9.7) and (9.8) in the matching condition (9.4)
implies that

û ∼
{

0, x̂ > âŷ
2/(γ + 1), x̂ < âŷ

as t̂→ 0+,

in ŷ > 0. Writing this condition in terms of the normalized asymptotic variables (8.6)
and a normalized wedge angle,

a =
â√
2
, (9.9)

we get the initial condition stated in (2.9). The expression for a in (2.4) follows from
(2.7), (9.1), and (9.9).
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Čanić, S. & Mirković, D. 1998 A numerical study of Riemann problems for the two-dimensional
unsteady transonic small disturbance equation. SIAM J. Appl. Maths 58, 1365–1393.

Cole, J. D. & Cook, L. P. 1986 Transonic Aerodynamics. Elsevier.

Cole, J. D., Cook, L. P. & Schleiniger, G. 1997 Unsteady transonic flow: Flow about a suddenly
deflected wedge. AIAA J. 35, 1179-1186.

Colella, P. & Henderson, L. F. 1990 The von Neumann paradox for the diffraction of weak shock
waves. J. Fluid Mech. 213, 71–94.

Courant, R. & Friedrichs, K. O. 1976 Supersonic Flow and Shock Waves. Springer.

Enquist, B. & Majda, A. 1981 Numerical radiation boundary conditions for unsteady transonic
flow. J. Comput. Phys. 40, 91–103.

Gamba, I., Rosales, R. R. & Tabak, E. 1999 Constraints on the formation of singularities for the
transonic small disturbance equations. Commun. Pure Appl. Maths 52, 763–779.

Guderley, K. G. 1962 The Theory of Transonic Flow. Pergamon.

Henderson, L. F. 1966 On a class of multi-shock intersections in a perfect gas. Aero. Q. 17, 1–20.

Henderson, L. F. 1987 Regions and boundaries for diffracting shock wave systems. Z. Angew.
Math. Mech. 67, 73–86.

Henderson, L. F. & Menikoff, R. 1998 Triple-shock entropy theorem and its consequences.
J. Fluid Mech. 366, 179–210.

Hunter, J. K. 1991 Nonlinear geometrical optics. In Multidimensional Hyperbolic Problems and
Computations. IMA Volumes in Mathematics and its Applications, Vol. 29 (ed. A. J. Majda &
J. Glimm), pp. 179–197. Springer.

Hunter, J. K. & Keller, J. B. 1984 Weak shock diffraction. Wave Motion 6, 79–89.

Keller, J. B. & Blank, A. 1951 Diffraction and reflection of pulses by wedges and corners.
Commun. Pure Appl. Maths 4, 75–94.

Lighthill, M. J. 1949 The diffraction of a blast. I. Proc. R. Soc. Lond. A 198, 454–470.

Morawetz, C. S. 1956a On the nonexistence of continuous transonic flows past profiles, I. Commun.
Pure Appl. Maths 9, 45–68.

Morawetz, C. S. 1956b On the nonexistence of continuous transonic flows past profiles, II. Commun.
Pure Appl. Maths 10, 107–131.

Morawetz, C. S. 1956c On the nonexistence of continuous transonic flows past profiles, III.
Commun. Pure Appl. Maths 11, 129–144.

Morawetz, C. S. 1982 The mathematical approach to the sonic barrier. Bull. Am. Math. Soc. 6,
127–145.

Morawetz, C. S. 1994 Potential theory for regular and Mach reflection of a shock at a wedge.
Commun. Pure Appl. Maths 47, 593–624.

Neumann, J. von 1963 Collected Works, Vol 6. Pergamon Press.

Puckett, G., Henderson, L. F. & Colella, P. 1995 A general theory of anomalous shock refraction.
In Shock Waves @ Marseille IV (ed. R. Brun & L. Z. Dumitrescu), pp. 139–144. Springer.

Richtmeyer, R. D. 1981 Principles of Mathematical Physics, Vol. I. Springer.

Sakurai, A. 1964 On the problem of weak Mach reflection. J. Phys. Soc. Japan 19, 1440–1450.

Sasoh, A., Takayama, K. & Saito, T. 1992 A weak shock wave reflection over wedges. Shock Waves
2, 277–281.

Steger, J. L. & Dalsen, W. R. 1989 Basic numerical methods. In Unsteady Transonic Aerodynamics
(ed. D. Nixon). Progress in Astronautics and Aeronautics. AIAA.

Sternberg, J. 1959 Triple-shock-wave intersections. Phys. Fluids 2, 179–206.

Tabak, E. & Rosales, R. R. 1994 Weak shock focusing and the von Neumann paradox of oblique
shock reflection. Phys. Fluids 6, 1874–1892.

Ting, L. & Ludloff, H. F. 1952 Aerodynamics of blasts. J. Aero. Sci. 19, 317–328.

Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley & Sons.

Yang, H. Q. & Przekwas, A. J. 1992 A comparative study of advanced shock-capturing schemes
applied to Burgers’ equation. J. Comput. Phys. 102, 139–159.


